Time: 21/2 hrs.

Note:

1. All questions are compulsory with internal choice.

2. Draw neat diagrams wherever necessary.

3. Figures to the right indicate full marks.

Q.1 Answer the following (any four)

(20)

Marks:75

Mandiva!

(a) Explain NOT , AND and OR gate with their symbol , truth table.

- (b) Explain both the Demorgan's law.
- (c) Using AND gate draw NOT, AND and OR gate.
- (d) Draw IC diagram of AND gate and NAND gate.
- (e) Draw the circuit diagram for following Boolean expression.

i. $\overline{A}B + \overline{A}\overline{B}$

ii. $\overline{A} + BC + \overline{(BC)}$

(f) Simplify using K-map : $y=\sum m(0,2,5,8,10,13)$

Q.2 Answer the following (any four)

(20)

- (a) Explain memory hierarchy in detail.
- (b) What is addressing mode? Explain any three addressing modes.
- (c) Write a note on pipelining.
- (d) Processor requires the pages from virtual memory in the following sequence: 2,3,2,1,5,2,4,5,3,2,5,2 calculate Hit and Miss ratio using FIFO and LRU techniques.
- (e) Explain Daisy Chaining and Polling methods of Bus Contention.
- (f) Write a note on virtual memory management using Pagging.

Q.3 Answer the following (any four)

(20)

- (a) Write micro operations for MOV BL,25 and ADD BL,CL
- (b) Draw and Explain instruction cycle.
- (c) Explain Delay Element Method with advantages and disadvantages.
- (d) Explain Wilke's design for a Microprogrammed control unit.
- (e) Differentiate between Memory mapped I/O and I/O mapped I/O.
- (f) Explain memory interleaving.

Q.4 Answer the following (any five)

(15)

- (a) Simplify using K-map : $y=\sum m(0,2,5,8,10,13)$
- (b) Explain 4:1 multiplexer.
- (c) Implement using multiplexer: $y=\sum m(0,2,5,8,10,13)$
- (d) Explain Half adder with circuit diagram, symbol and truth table.
- (e) Processor requires the pages from virtual memory in the following sequence: 7,5,3,2,1,0,4,1,6,7,4,2 calculate Hit and Miss ratio using FIFO and LRU techniques.
- (f) Write micro operations for MOV CL,25 and SUB BL,CL.