		(2 ½ Hours)	3.	[Total Marks: 75]			
N.B	. 1) All questions ar	e compulsory.					
	2) Figures to the ri	ght indicate marks.	, i	7			
	3) Illustrations, in-	depth answers and diagr	ams will be appreciate	d.			
	4) Mixing of sub-q	uestions is not allowed.	S. 1				
Q. 1	•			(1034)			
(a)		alternative from the opt		(10M)			
(i)		wing transform is separa					
	(a) Fourier trans		Haar transform				
	(c) Walsh transfe	orm (d)	That transform	L.			
(ii)	The photosensitive	e detector of the human	eve is the				
(11)	(a) Retina	(b)	Cornea				
	(c) Iris	(d)	Eyelens				
	(c) 1115	(-/		774 174			
(iii)	Which of the follow	wing two values used by	Walsh function.				
()	(a) +1 or -1	(b)					
	(c) $1/\sqrt{2}$ or $-1/\sqrt{3}$		-2 or +2				
(iv)	Increase the size of	f the mask results in	_ of the image.				
	(a) Less blurring	(b)	More blurring				
Į.	(c) Improvement	(d)	Sharpening				
	A			1			
(v)	Erosion operation	is used to remove the _	pixels.				
~	(a) Object	(b)	Background				
	(c) Foreground	(d)	Image				
-							
(vi)	An image can be ex	spanded by oper					
	(a) Zooming	(b)	Dilation				
	(c) Erosion	(d)	Subtraction				
	, Tr						
(vii)	are mem	ory less operations.					
	(a) Mask operatio	ns (b)	Global operations				
	(c) Point operation	ns (d)	Dynamic operation	S			
	4.						
(viii)	A gradient operator	r for edge detection is _					
	(a) Roberts	(b)	First order derivativ	ve			
	(c) Second order of	lerivative (d)	Zero crossing deriv	ative			
(ix)	Compressed image can be recovered back by						
(2.7)	(a) Image enhance		Image contrast				
	(c) Image decomp	1	Image recovery				
	(c) mage decomp	(/	,				

Page 1 of 3

Paper / Subject Code: 87005 / Digital Image Processing

		37.
(x)	Zigzag scan is employed in	
	(a) Lossless compression (b) Jpeg compression	
	(c) Lossy compression (d) Statistical compression	- 3
		Ca
(b)	Fill in the blanks by selecting from the pool of options:	5M)
(-)	(pixel, mask, printers, monitors, periodic, exponential, Intensity, Frames,	
	Robert operator, Prewitt operator)	
(i)	Structuring element is a	4
(1)	oductuming element is a	
(ii)	Additive colour formation is an all and in	
(11)	Additive colour formation is employed in	
(iii)	Y/n1 n2)-y/31+N1 -2)/32(1 0	
(111)	X(n1,n2)=x(n1+N, n2) is equation used for sequence.	
/:\		100
(iv)	Every run length pair introduces new	Ž.
, ,		
(v)	Classical edge detector uses	
	선물 경기 경기 없는 다른 사람이 되었다.	
Q. 2		15M)
(a) 🔿	Describe the KL transform.	
(b)	Perform the 2D linear cross correlation process on the following matrices.	
5	x1(m,n)=[3 1 x2(m,n)=[1 5	
	24] 23]	
(c) 💸	Explain the image sampling and image quantization process.	
(d)	List and explain the classification of the 2D system.	
(e)	What are the applications of Digital Image Processing? (any five)	
(f)	Discuss Hadamard transform. Derive Hadamard matrix for N=8.	
Q. 3	Attempt the following (Any THREE)	15M)
(a)	Discuss following colour models.	
Ser.	i) CMYK model	
	ii) HIS model	
ъ) 🔏	List different ways to obtain binary image using different enhancement	
(J) (J)	technique. Explain any two of them.	
Section .	technique. Explain any two of them.	
-		
c)	Perform Histogram equalization on following matrix.	
, Č	4444	
(Charles	34543	
3.	35553	
. 7	34543	
	4444	
d)	Describe the Alpha blending. Compare Alpha blending with image	
	arithmetic.	
e)	Explain Gaussian filter with reference to image enhancement.	
1		

Page 2 of 3

24467

Paper / Subject Code: 87005 / Digital Image Processing

(f)	Explain morphological operations on the binary image.					
	Discuss following colour models.					
	i) CMYK model					
	ii) HIS model					
Q. 4	Attempt the following (Any THREE)	(15)				
(a)	Discuss the various algorithm used for edge linking through Heuristic					
	approach.					
(b)	Explain the region splitting and merging approach in Image Segmentation.					
(c)	What is Partitional clustering? Compare K-means clustering and Fuzzy					
	clustering.					
(d)	Generate the non binary Huffman code for the word 'COMMITTEE'.					
(e)	Write a note on Transform based compression.					
(f)	Describe the classification of redundancy.					
	그 경기 없는 이 이 기계를 가게 되는 것이 없다.					
Q. 5	Attempt the following (Any FIVE)	(15)				
(a)	Write a note on Line Impulse sequence.					
(b)	What is resolution? Explain two types of resolution.					
(c) 💉	Describe Negative transformation.					
(d)	What is distance transform? Explain Euclidean distance.					
(e)	Explain human perceptron of colour.					
(f)	List various JPEG mode. Explain any two modes of it.					
(g)	Draw and explain any three types of edges.					
(h) 💸	Discuss Laplacian of Gaussian.					

24467