Time: 21/2 Hrs.

Note: (1) All questions are compulsory with internal choice.

- (2) Figures to the right indicate full marks.
- (3) Symbols have their usual meanings.
- (4) Scientific calculator fx 82 series or lower version is only permitted.

#### Attempt any three of the following. Q.1

(15)

- Define partition of a set. Is  $\{(1,3,5),(2,6,7),(4,8,9)\}$  a partition of  $\{1,2,3,4,5,6,7,8,9\}$ ? (i) Justify your answer.
- For all sets A, B and C, Prove by using set identities: (A B) (B C) = A B(ii)
- Indicate whether each of the following arguments is valid or invalid. Justify your answers by drawing diagrams.
  - (a) All human beings are mortal.

(b) All human beings are mortal.

Felix is mortal.

Zeus is not mortal.

.. Felix is a human being.

.. Zeus is not a human being.

- (iv) Prove by contrapositive method of proof if  $A \cup C \subseteq A \cap C$  then A = C.
- A study of 200 books written shows that there are three common character types: villain, female heroine and the computer genius.
  - 128 books have a villain or a female heroine.
  - 82 books have a female heroine.
  - 68 books do not have a female heroine, a villain or computer genius.
  - 54 books have a villain and a computer genius.
  - 28 books have all three-character types.
  - 49 books have female heroine and a computer genius.
  - 51 books have a villaln and a female heroine.
  - a) How many books include only a computer genius and a villain?
  - b) How many books does not have a computer genius?
  - c) How many books have a female heroine only?
- (vi) Let  $\mathbb R$  be a set of real numbers and a relation  $\leq$  defined on  $\mathbb R$ . Check whether  $(\mathbb R, \leq)$  is a POSET.

### Attempt any three of the following. Q.2

(15)

- If  $f: \mathbb{R} \{\frac{7}{3}\} \to \mathbb{R} \{\frac{4}{3}\}$  is defined as  $f(x) = \frac{4x-5}{3x-7}$ . Determine whether the function is (i)
- bijective and if so, find its inverse. Consider permutation  $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 5 & 6 & 1 & 3 & 4 \end{pmatrix}$  and  $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 1 & 2 & 5 \end{pmatrix}$  in  $S_6$ . (ii)

Find

a) τ ∘ σ

- b)  $\sigma^{-1}$
- c) σ ∘ τ
- d)  $\sigma^2$
- There are three doctors, four engineers, two statistician and one economist. A committee of four from among them is to be formed. Find the probability that the committee consists of
  - a) one of each kind.
  - b) atleast one doctor.
  - c) economist as a member and three others.
- Find the probability of getting five heads, when we toss a coin fifteen times? (iv)
- If X is a number appearing on the uppermost face of fair dice. Find the variance of X. (v)
- Let X be a random variable with mean 40 and standard deviation 2. Use Chebyshev's (vi) Inequality to find b for which  $P(40 - b \le X \le 40 + b) \ge 0.95$ .

### Attempt any three of the following. Q.3

(15)

- Find the number of distinct seven letter word that can be formed using the letters of the (1) word "BENZENE".
- Suppose five people check in their hats at a restaurant and they are given back their (ii) hats at random. Find the probabilities that no person receive his/her own hat.

- (iii) Find the number of non-negative solutions x + y + z = 18 with the condition that  $x \ge 3$ ,  $y \ge 2$ ,  $z \ge 1$ .
- (iv) Show that however you choose five points inside an equilateral triangle of side 1, there will be atleast two points whose distance apart is less than  $\frac{1}{2}$ .
- (v) How many positive integers, less than 100 is not a factor of 2, 3 and 5?
- (vi) Solve the recurrence relation  $a_n = 2a_{n-1} 3a_{n-2}$ ,  $a_{0-1}$ ,  $a_1 = 2$ .

# Q.4 Attempt any three of the following.

(15)

(i) Consider the following graphs  $G = (V, E, \gamma)$  and answer the questions.



- (a) Describe G formally.
- (b) Find the degree of each vertex.
- (c) Verify the sum of degrees and number of edges in G.
- (ii) Is it possible to construct a graph with twelve nodes such that two of the nodes have degree three and the remaining nodes have degree four.
- (iii) Explain the following with necessary graph.
  - a) Is every Eulerian graph a Hamiltonian?
  - b) Is every Hamiltonian graph a Eulerian?
- (iv) Explain Konigsberg seven bridges problem.
- (v) Determine whether the following graphs  $G_1$  and  $G_2$  are isomorphic.



(vi) Determine the number of regions defined by a connected planar graph with 6 vertices and 10 edges. Draw a simple and a multigraph.

# Q.5 Attempt any three of the following.

(15)

- (i) Draw Hasse diagram for the following relations on set  $A = \{1, 2, 3, 4, 5\}$  with relation  $R = \{(1,1), (1,2), (1,3), (1,4), (1,5), (2,4), (3,5), (2,2), (3,3), (4,4), (5,5)\}$
- (ii) Explain the following with an example:
  - a) Maximal element
- b) Minimal element
- (iii) Determine whether the following Hasse diagram represent a lattice.



- (iv) Explain BFS algorithm.
- (v) Represent the expression in a binary tree and determine its value.

$$(3+9\times(15\div5))\div(15-(70-(12\times5)))$$

(vi) Explain post order traversal.