FYCS/SEM I/REG/DM

Time: 21/2 hrs.

Marks:75

Note:

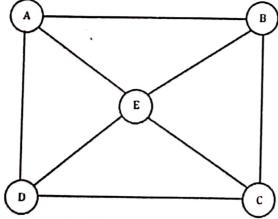
- 1. All questions are compulsory with internal choice.
- 2. Draw neat diagrams wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Use of scientific calculator fx 82 series and below is only allowed.

Q.1 Answer the following (any four)

(20)

- (a) Let $f: \mathbb{R} \to \mathbb{R}$ be a function defined as $f(x) = \frac{3x-2}{7} \forall x \in \mathbb{R}$. Show that f is bijective. Hence find $f^{-1}(x)$
- (b) Let $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2x + 1 and $g: \mathbb{R} \to \mathbb{R}$, $g(x) = x^2 + 2$ Find i) $g \circ f$, ii) $f \circ f$, iii) $g \circ g$, iv) $f \circ g$
- (c) Let \sim be an equivalence relation on set X. Then show that $x \in [y] \iff [x] = [y]$, for $x, y \in X$
- (d) Let R be a relation on Z, defined by xRy if and only if 3x + 5y is divisible by 8, for $x, y \in Z$. Show that R is an equivalence relation on Z.
- (e) Solve the recurrence relation: $a_n = 2a_{n-1} + 3a_{n-2}$, $a_0 = 1$, $a_1 = 2$
- (f) Find particular solution of $: a_n + 5a_{n-1} + 6a_{n-2} = 2^n$

Q.2 Answer the following (any four)


(20)

- (a) How many positive integers, less than 100 is not a factor of 2, 5 and 7?
- (b) In how many ways can 6 children be arranged in a line such that
 - (i) Two particular children of them are always together
 - (ii) Two particular children of them are never together?
- (c) Find the number of distinct permutations that can be formed from all the letters of the word "SOCIOLOGICAL".
- (d) Find the number of non negative solutions x + y + z = 10 with the condition that $x \ge 5$, $y \ge 3$, $z \ge 1$.
- (e) Find middle term in the binomial expansion of $(2x 3x^2)^4$.
- (f) Define Godel number. Hence find Godel number for 3600.

Q.3 Answer the following (any four)

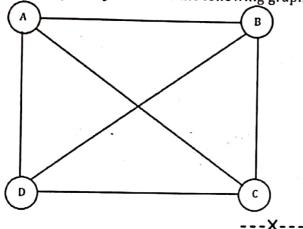
(20)

(a) Consider the following graphs $G = (V, E, \gamma)$ and answer the questions.

- (a) Describe G formally.
- (b) Find the degree of each vertex.
- (c) Verify the sum of degrees and number of edges in G.
- (b) Give the examples of following graph:
 - i) A Hamiltonian graph which is Eulerian.
 - ii) An Eulerian graph which is not a Hamiltonian.
- (c) If 6,5,3,3,2,1,1,1 is a degree sequence of a graph G then find number of edges of G.
- (d) Show that complete graph K_n for $n \le 4$ is planar.

(e) By using Handshaking lemma show that chemical formula of Alkane is C_nH_{2n+2} Where C is Carbon, H is Hydrogen and n is number of Carbon.

(f) Consider the inorder expression of binary search tree: $t + (u \times v) \div (w + x)$ Draw corresponding binary search tree.


Answer the following (any five)

1

Q.4

(15)

- (a) Let $A = \{1,2,3\}$. Let $R: A \to A$ be a relation defined by $R = \{(1,1), (1,2), (1,3)\}$. Find transitive closure of R.
- **(b)** Draw hasse diagram of relation $R = (D_{12}, |.)$
- (c) In a class, there are 15 boys and 10 girls. The teacher wants to select 1boy and 1 girl to represent the class for a function. In how many ways can the teacher make this selection?
- (d) Thirteen peoples are swimming in the lake. Prove that at least two of them were born in the same month of the year.
- (e) Expand : $(a + b + c)^3$
- (f) Draw adjacency matrix of the following graph:

