Time: $21 / 2 \mathrm{hrs}$.
Marks:75

Note: \quad 1. All questions are compulsory with internal options.
2. The figures to the right indicate full marks.
3. Draw a neat diagram wherever necessary.
Q. 1 (A) Fill in the blanks with the correct answer from the alternatives given below. (Attempt any 8)
(1) The simple interest on Rs $1000 @ 6 \%$ p.a. for 5 years is Rs \qquad .
(a) 200
(b) 250
(c) 300
(d) 350
(2) The compound interest for Rs 50,000 for 1 year @ 12% p.a. will be maximum if the compound interest is calculated \qquad .
(a) Yearly
(b) Half yearly
(c) Quarterly
(d) Monthly
(3) Mr. Shah borrowed Rs 20,000 from Mr. Patel. After 8 months, he returned the amount, with the simple interest. If the rate was 12% p.a., find the interest he had paid.
(a) Rs 1200
(b) Rs 1400
(c) Rs 1600
(d) Rs 1800
(4) The value of the determinant $\left|\begin{array}{lll}2 & 4 & 6 \\ 2 & 4 & 6 \\ 1 & 5 & 2\end{array}\right|$ is \qquad -
(a) 0
(b) 1
(c) -1
(d) 10°
(5) If rows and columns of a determinant are interchanged, its value \qquad .
(a) Increases
(b) Decreases
(c) Remains unchanged
(d) Changes in sign
(6) A matrix of order $\mathrm{m}^{*} 1$ is called a \qquad -
(a) Row matrix
(b) Column matrix
(c) Unit matrix
(d) Diagonal matrix
(7) The rate of change of total revenue with respect to demand D is called \qquad \ldots
(a) Total revenue function.
(b) Demand function
(c) Marginal revenue
(d) Elasticity of demand
(8) The derivative of $\log 10$ with respect to x is \qquad
(a) $1 / \log 10$
(b) 0
(c) $1 / x$
(d) $1 / 10$
(9) The differences of first forward differences are known as \qquad -
(a) Second forward differences
(b) Third forward differences
(c) Fourth forward differences
(d) Argument
(10) The forward differences of y are denoted by the operator \qquad -
(a) Δ
(b) A
(c) B
(d) μ
(B) State whether the following statements are True or False. (Attempt any 7)
(1) The interest calculated on principal amount only, whatever may be the period is called simple interest.
(2) To calculate the compound interest, we should know the amount A and principal P.
(3) EMI stands for equal monetary investments.
(4) A square matrix with all non- diagonal elements zero and diagonal elements equal is called a triangular matrix.
(5) If A, B and C are three matrices of same order, $m^{*} n$ and $(A+B)+C=A+(B+C)$ then matrix addition is said to be associative.
(6) The order of a determinant can be m * n.
(7) The derivative of a derivative is called second order derivative.
(8) If C is a total cost function of x , its derivative is called average cost.
(9) The backward differences of y are denoted by the operator E.
(10) The values of $f(x)$ obtained from Newton's forward / backward difference formula are same.
Q. 2 (a) Ajit and Akshay kept exactly identical amounts in two different banks, giving simple interest at 9% and 10% respectively. Ajit got interest of Rs 4050 after 2.5 years while Akshay kept his money in the other bank for 4.5 years. Calculate the simple interest he will receive.
(b) In how many years a sum of Rs 35,000 will amount to Rs 52,500 at 10% simple interest?
Q. 2 (p) Usha kept Rs 1,00,000 as a fixed deposit for 5 years in a bank at 8% p.a., compound interest and her friend Nisha kept Rs 80,000 in bank for 8 years with 10% p.a., compounded annually. Who will receive more compound interest and by how much?
(q) Find the final amount of Rs 10,000 at 9% p.a. in 3 years compounded half-yearly.
Q. 3 (a) Evaluate the following determinants:
(i) $\left|\begin{array}{ccc}2 & -1 & 1 \\ 1 & 0 & 2 \\ -1 & 1 & -1\end{array}\right|$
(ii) $\left|\begin{array}{ccc}3 & -1 & 2 \\ 1 & 0 & 5 \\ 2 & -1 & 1\end{array}\right|$
(b) If $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & 0 & -1\end{array}\right]$ and $B=\left[\begin{array}{ccc}1 & 1 & -1 \\ 2 & 0 & 3 \\ 3 & -1 & 0\end{array}\right]$, find the product matrix $A B$. Is it possible to find BA? If no, why?

OR

Q. 3 (p) Solve the following equations in three unknowns using Cramer's rule:
$2 x+y+z=8,3 x-y+2 z=11$ and $x-y+z=4$
(q) Differentiate w.r.t x the following functions:
(i) $\quad \mathrm{X}^{3}-\log \mathrm{x}+\mathrm{e}^{\mathrm{x}}+4^{\mathrm{x}}+25$
(ii) $4 x^{7}-5 \log x+5 e^{x}$
Q. 4 (a) Examine for maxima and minima the function $f(x)=2 x^{3}-6 x^{2}-48 x+11$
(b) The total cost function is given by $C=2 x^{2}+4 x+25$. Find the average cost, the marginal cost and the marginal average cost when $\mathrm{x}=10$.

OR

Q. 4 (p) If $f(x)=x^{3}-2 x^{2}+3 x+1$, find the values of $f(x)$ for $x=0,1,2,3,4,5$. Prepare the difference table and verify that the third order differences are constant.
(q) The following table represents exports of fruits in lakhs of Rs to Dubai for 4 different years. Find the estimated exports in the year 2009.

Year	2006	2008	2010	2012
Exports	57	59	63	68

Q. 5 (a) Estimate $f(3.5)$ using newton's backward interpolation formula:

X	0	1	2	3	4
$\mathrm{~F}(\mathrm{x})$	0	1	8	27	64

(b) The demand function is given by $p=30+6 \mathrm{D}-\mathrm{D}^{2}$ where p is price and D is demand. Find the
total revenue, average revenue and marginal revenue when the demand is 4 units.
OR
Q. 5 (p) Write short notes on (Attempt any 3)
(1) Properties of determinants
(2) Compound interest
(3) Marginal cost
(4) Properties of matrix addition
(5) Properties of matrix multiplication

